Population Based Particle Filtering

نویسندگان

  • Harish Bhaskar
  • Lyudmila Mihaylova
  • Simon Maskell
چکیده

This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed technique introduces variety in the particles both in the sampling procedure and in the resampling step. The proposed EP MCMC filter is compared with the generic particle filter [1], with a population MCMC [2] and a sequential Monte Carlo sampler [2]. Its effectiveness is illustrated over an example for object tracking in video sequences and over the bearing only tracking problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering

In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

A Smarter Particle Filter

Particle filtering is an effective sequential Monte Carlo approach to solve the recursive Bayesian filtering problem in non-linear and non-Gaussian systems. The algorithm is based on importance sampling. However, in the literature, the proper choice of the proposal distribution for importance sampling remains a tough task and has not been resolved yet. Inspired by the animal swarm intelligence ...

متن کامل

Sigma-Point Filtering and Smoothing Based Parameter Estimation in Nonlinear Dynamic Systems

We consider approximate maximum likelihood parameter estimation in nonlinear state-space models. We discuss both direct optimization of the likelihood and expectation– maximization (EM). For EM, we also give closed-form expressions for the maximization step in a class of models that are linear in parameters and have additive noise. To obtain approximations to the filtering and smoothing distrib...

متن کامل

Square Root Unscented Particle Filtering for Grid Mapping

In robotics, a key problem is for a robot to explore its environment and use the information gathered by its sensors to jointly produce a map of its environment, together with an estimate of its position: so-called SLAM (Simultaneous Localization and Mapping) [13]. Various filtering methods – Particle Filtering, and derived Kalman Filter methods (Extended, Unscented) – have been applied success...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008